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A REVIEW OF THE PACKING PROBLEM

BY

HERBERT SOLOMON and HOWARD WEINER
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ABSTRACT

The random packing problem has been of interest to investigators

in several disciplines. Physical chemists have investigated such

models in two and three dimensions, Because of analytical diffi-

culties, one-dimensional analogues have been explored and these

are referred to as the parking problem. A number of results are

explored and atttmpts are made to tie them together. Applications

are also highlighted.

INTRODUCTION

This paper is a selected yet comprehensive review of asymptotic

methods and results for sequential random packing in one and higher

dimensions. In one dimension, it is known as the parking problem.

Section I contains theoretical methods for the parking problem

developed by Renyi (1958) and another approach by Dvoretzky and

Robbins (1964). This is followed by a generalization by Solomon

(1967). We also consider simulation and computational methods for

obtaining the asymptotic parking constant (mean packing density in
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one dimension) C = .74759 (to five decimal places) developed by

some authors and demonstrate its value to 15 decimal places.

Higher moments and a central limit theorem, and one-dimensional

extensions with non-uniform length cars, are discussed. Section II

considers the two-dimensional Renyi case, for which most simulations

indicate that the Palasti conjecture, namely the asymptotic parking

constant is C2, is false. The Palasti conjecture in general

asserts that mean packing density in n dimensional sequential
th

random space filling is the n power of mean packing density in

one dimension. Higher dimensional simulations indicate a further

departure than in two dimensions from the corresponding Palasti

conjecture. Section III gives a critical review of two published

theoretical approaches to the two-dimensional situation. Comments

on possible directions for research on the two-dimensional case

are given. Some applications are discussed throughout the paper

and featured along with miscellaneous remarks in Section IV.

I. One Dimension

In his pioneering paper, Renyi (1958) mentions a three-dimen-

sional random sphere packing problem posed by the physical

chemist, J. D. Bernal. It was thought that the mean random

packing density of molecules (spheres) for the inert gases

could serve as a classification index for these elements. Since

three-dimensional mean packing was mathematically intractable,

Renyi decided to explore a simpler situation; namely the random

packing (parking) mean in one dimension. The Renyi one-dimen-

sional parking problem is as follows. On the (parking) interval

[O,x], x > 1, a unit-length segment (carl is placed (parked)

with its left end uniformly distributed on (0,x-l). Independent

of the first car, a second unit length car is placed uniformly on

the interval (O,x). If the second car does not overlap the

parked car, then it is considered parked. If it does overlap the

first car, then it is discarded. The process continues until no

new car may be parked, that is, a unit length is not vacant.
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In the mid 1950's, the first author while at Columbia Univer-

sity heard this same problem posed by C. Derman and M. Klein who

were colleagues there. They also provided some initial develop-

ment. The motivation was some consternation by Derman and Klein

over the car parking problem in the streets of New York City.

Thus on two sides of the Atlantic Ocean at approximately the same

time but without any knowledge of each other's efforts and from

two different motivations, we have work beginning on the parking

problem. Derman and Klein who did not publish on this topic told

Robbins, also at Columbia, of their model and he with Dvoretzky,

who frequently visited Columbia in the 1950's, developed an

approach that appeared later, Dvoretzky and Robbins (1964).

We now present the Renyi (1958) and Dvoretzky and Robbins

approaches and results.

Let

(1.1) N(x) = total number of cars of unit length that

may be parked on a parking interval on length x.

Let

(1.2) M(x) = E(N(X)).

The Renyi parking problem in one dimension is to show that

(1.3) lim M(x)/x - C

and to evaluate C explicitly. To do this, the original approach

of Renyi is now given. The first car is parked at (t,t+l) on

the parking interval (O,x+l). The mean number of cars parked

to the left of the first car is M(t), and the mean number to

the right of (t,t+l) is M(x-t). Since the coordinate t is

drawn from a random variable which is uniform on (O,x), it

follows that

(1.4) M~x = -- (M(t) +M(x-t)dt+I
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or

(1.4a) M(x+l) I 1 + 2 M(u)du

M(x) O, 0 < x <1

M (x) -1, 1 x< 2.

Renyi proceeds as follows. Multiplying (l.4a) by x, and

taking derivatives, we get

(1.5) xM' (x+l) + M(x+l) = 2M(x) + 1.

Let the Laplace transform for M(x) be

(1.6) O(x) f e-'xM(x)dx,

s = a + it, a > 0

That the Laplace transform exists follows from 0 < M(x) <x.

Multiplying both sides of (1.5) by e- sx  and integrating with

respect to x, one obtains, using M(x) - 0, 0 < x < 1,

(1.7a) FO M(x+l)e-Stdx - eS M(u)e-usdu = es (x)

r d~e s u e usdu

(1. 7b) xM' (x+l)e-SXdx -- [es M'(u)e-s dul

and an integration by parts yields, using 0 < M(x) < x,

(l.7c) F M'(u)e-USdu s(s)

Hence (1.5), (l.7a-c) yield

(1.8) -(se S(s))' + e S(s) - 2€(s) + .
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To solve (1.8) for *(s), let v(s) -e s (s), then w(s)

satisfies

(1.9) sw'(s) -- 2w(s)e 5s

Since, for s > 0,

(1.10) 0o<w(s) < es xesxdx

it follows that

(1.11)lim W(s) =0

hence the first-order differential equation (1.9) may be solved

by the method of variation of parameters to yield

(1.12) 1~)=- exp[-s J 1-- duldt.

so that

(1.13) O(s) = -S~ exp(-s ft le-u duldt

Hence

(1.14) lim s2O(s) - exp(-2 f ( 1-e _u )du]dt = .748
s+0 O1

Since a3(x) - Jo M(u)du is monotone increasing and since

(1.14a) S 2jn e-sxdcl(x) - s 2*(s)

by a Tauberian theorem, and (1.14),

(1.14b) urn -1[M(u) du =

X-*= x 0 o
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Dividing (1.4) by x+l and letting x - , one obtains (1.3).

Renyi next observes that the linear function

(1.15) Z(c,x) - ax + a-I

satisfies (1.4) identically for any value of the constant a.

It is then shown that

(1.16) lir (M(x)-Cx) - C-1
2o

The second moment, M 2(x) = E(N 2(x)) is then approximated. If

0 < t < x is a value of a uniform random variable on (0,x),

then by conditioning on t, one may write

(1.17) N(x+l) = Na(t) + Nb(x-t) + I

where N a (t), Nb(x-t) are independent and Na(t) is distributed

as N(t) and Nb (x-t) is distributed as N(x-t), respectively.

From this we obtain the equation

(1.18) M (x+1) -f (l+M 2 (t) + M2 (x-t) + 2M(t)2 ~x 0 22

+ 2M(x-t) + 2M(t)M(x-t))dt

so that

(1.19 --X~)- M(tOdt +- 2 M(t)M(x-t)dt
2x 0 x 0

+2 It- M2(t)dt
x J

Using a strengthened version of (1.16), namely

(1.20) M(x) - Cx + C-i _ O(x - n ) all n > 1

it is then inferred that
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(1.21) Var(N(x)) 0(x)

The result of (1.21) is sharpened by Dvoretsky and Robbins (1964)

and they obtain a central limit theorem for the packing random

variable in two ways. This is described next. For k = 1,2,3,...,

let

(1.22) Ck(x) - E(N(x) - Z(C,x))

Using the conditional independence argument of Renyi, and the

fact that 2(C,x+l) = t(C,t) + t(C,x-t) + I for 0 < t < x, it

follows that

1 k fX
(1.23) ¢k(x+l) = x (k) 0 (00 (x-t)dt

From (1.23) and some asymptotic results for integral equations, they

are able to show that for all x > 0,

(1.24) inf M(t)+l < C < sup M(t)+l
-,,x < t < x+l t+l -- - x < t < x+l t+l

a result used later by Blaisdell and Solomon (1970) to obtain

estimates of C to many decimal places. Dvoretsky and Robbins

also show by induction from (1.23) that for all 0 < e < 1,

(1.25) Ok(x) = kx[/21 + O(x[k/ 2 1-l+)

where

(1.26) C2k (2k)! X 2k

where

(1.27) 0 < X2 = lim Var(N(x)) <
2 x

7
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From this, it is shown that, if c = , that

k Ckx(k/2]+o(xr k /21)

(1.28) E (N(x)- (x) k

hece t/ar(N2(x)) (x2x+o(x))k/2

hence that

k k even
E(N(x)_M(x))k 2k/2(h)!

(1.29) lira E(=x-Mx

x-O O ar(N(x)) 0 , k odd

Since these are the moments of the normal distribution, which

is uniquely determined by its moments, the central limit theorem

now follows from the convergence of moments.

Theorem.

(1. 0)N(x)-M(x) L' (1.30) - N(0,)M
b Var(N (x))

Dvoretzky and Robbins also prove the central limit theorem by

a Lyapounov argument using second moments and the conditional

independence of N(x 1 ),N(x 2 ) ,...,N(xn), the numbers of cars parked

in disjoint open intervals of (O,x) given that n-i cars have

already been parked.

Mannion (1964) has also obtained the asymptotic behavior of

M(x) and Var(N(x)) by methods similar to Renyi and calculated

the approximation

(1.31) lim Var(N(x)) = C 035672
x 2

In (2.9) we compute C 2  .038156 and thus differ slightly.

Ney (1962) and Mullooly (1968) have used a more complex

version of Renyi's ideas to extend the asymptotic moment results

to cars of random lengths which follow a probability distribution

bounded below by a positive constant. See also Weiner (1978).

V .



Goldman, Lewis and Visscher (1974) have also obtained related one

dimensional results for random car size where car length follows

a given distribution, bounded above and below, and there is a

termination probability, such that after a geometric number of

attempts to park a car are unsuccessful, the attempts terminate

with probability p. The equation for EN(t) - M(t), the mean

total number of parked cars, with length given by density g(x),

distribution function G(x), is obtained as

0(x) 2 xg(u)du M sdsM(x) = l-(l-G(x))(l-p) [ + ~)u du M(s)ds

kIf Mk(x) = EN (x),

Mk(x) = Y(x)[E(LkIL < x) + (x g(u)du 0 Mk(y)dy)

where

x k
k u g(u)du

E(LIL < x)= G(x) , k= 1,2,...

Some numerical results indicate that the empirical frequencies

of car lengths do not correspond to the theoretical frequency g(x),

since, e.g., short cars pre-empt spaces so that longer cars may not

park. A conjecture of Lewis and Goldman in Goldman, Lewis and

Visscher (1974) that the mean fraction of parking interval covered

is an increasing function of the coefficient of variation of the

underlying length distribution is somewhat tenable by experiment.

See also Weiner (1980b) for a central limit theorem obtained from

asymptotic moments similar to that in Dvoretzky and Robbins (1964).

A one-dimensional model by Solomon (1967) for sequential

parking of unit length cars on a curb (O,x), x > 1 is as follows:

The left end of each unit length car is uniformly distributed on

(-a,x-l+8) where a+$- n< 2, a < 1, 8 < 1. If the first car

lands such that it overlaps (O,x), it is shifted to the right
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(if it covers the origin) or to the left (if it covers the point x)

until it is at (0,i) or (x-l,x), respectively. Otherwise it

is parked as in the Renyi model. Successive cars are parked as

%s follows: If a car lands in a space within (O,x) which can

accommodate it, then it is parked there. If it overlaps either

end of (O,x), it is shifted until it just fits into (O,x) and

parked there if and only if there is an empty space at (0,I) or

(x-l,x). Otherwise it is discarded, since it then overlaps an

already parked car. If the new car overlaps a parked car on the

left by a length less than or equal to a, then the new car is

shifted to the right until its left endpoint is at the right

endpoint of the parked car that overlapped with it. It is then

parked if there is space for it, otherwise it is discarded.

Similarly, for overlap to the right by a length less than or equal

to $, the new car is shifted to the left and parked if there is

space. The process continues until no further cars may be parked.

*. To summarize, cars are parked as in the Renyi model, except that

cars which overlap are not immediately discarded, and are parked

at the next adjacent space contiguous to the already parked car,

if available. Let

(1.32) K(s) - mean total number of cars

which may be parked on (O,x) in accord with a Solomon model.

Then, conditioning on the placement of the first car, one obtains

the equation

(1.33) K(x) = 1 + - K(x-1) +--- K(u)dux+n- 
x+n-I 0

For q = 0, this is the Renyi parking scheme. The asymptotic

packing scheme for n 2 is indicated as follows, using a syste-

matic method which yields asymptotic packing constants in a form

which differs from that of Renyi. From (1.33) with T = 2,

V,..
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(1.34) (x+l)K(x) - x+l + 2K(x-1) + 2 J K(u)du

Since K(x) - 0, 0 < x < 1, K(x) - 1, 1 < x < 2, upon multiplying

(1.34) by e- sx , s > 0, and integrating from 1 to , one

obtains, with 4(x) - f* e-SXK(x)dx,

(1.35) *'(x) + *(s)(2e + s e-S l) 2 )eS

We now provide more detail because the methods uf Renyi may

not apply to the extended model. This model is a one-dimensional

analogue of the three-dimensional model where shaking is permitted

to allow unit spheres to settle and provide more space for addi-

tional spheres, thus increasing the mean packing constant.

A straightforward solution of (1.35) may be obtained using

the method of integrating factors, as follows. Let

-u
(1.36) Q(s) = *(s)exp[-s-2eS-s e--du]

Since K(x) < x, for s > 0,

(1.36a) O(s) < e-S/s

Then from (1.35), (1.36),

2 1 -s -s r u

(1.37) Q'(s) -( +--e (exp[-s-2e- - 2

S S

From (1.36a), (1.37), Q(-) = 0, and if one integrates Q'(s)

from t to - one obtains

(1.38) Q(t) = ( + -I)exp(-2[s+e s + e du)ds
t sS

11



An interesting representation for Euler's constant y is

(1.39) "Y .. . . du0f u u

This representation is important in the development of

(1.47) - (1.51) that follow. The desired representation (1.39)

is obtained as follows:

(1.40) y - e - t log t dt

and so

(1.41) Y J et log t dt -je log t dt
01

Then (1.41) may be written

(1.42) Y = - J log t d(l-e - t ) + log t d(e - t )J0

and the integration by parts indicated in each term of (1.42)

yields (1.39). The following expression for Y will be needed.

(1.43) y t 1 u du + _1 du - -- du0 t u T u
t it

where 0 < t < 1. This is obtained by writing (1.39) as

(1.44) Y u du + du - - duo t
-. 4 and one may split the middle integral of (1.44) to obtain

t l~-U I du I e-u e- U

(1.45) -e du + du u e u
4" 10 u it u t - u -- u

Combining the last two integrals of (1.45) yields (1.39).

From (1.36), (1.38) one obtains

12



(1.46) *(t) - [exp(t+2e-t-2+2 IC du+2].

+(.+4)exp(-2(s+e-1 .+ y e du)ds
S S

Using a Taylor expansion on the first integrand on the right of

(1.44), and integrating term by term yields, for 0 < t < 1,

0Deu n (_l)i+t

(1.47) Y--log t -u--du + .

t u t=l

Denote A(t), 0 < t < c by

(1.48) A(t) = ( + lexp (-2 [t+ e-t-1 +y+ -  dul)
t t 2 F.

Upon substituting the expression (1.47) for y in (1.48),

one may let t + 0 to obtain

(1.49) lim A(t) = 1
t+O

Hence, from (1.49), for 0 < t c 1,

(1.50) If A(x)dx= FO A(x)dx - t
It

From (1.46), (1.50), if 0 < t <<l, one may conclude that

(1.51) *(t) -- A(x)dx - 1 ,

(1.52) Claim: K(x) is monotone non-decreasing for x > 1

Proof of Claim. K(x) - 0, 0 < x < 1 and K(x) - 1, 1 < x < 2

hence assume the claim true for 0 < x < y. Then it suffices to

show that K(y+l) > K(y). From (1.34)

13



(1.53) (y+l)(K(y+l) - K(y)) 1+2(K(y) - K(y-l))

y'
+ 2J K(u)du-R(y+l)

Clearly, for x > 1,

(1.54) K(x) > x/2

Hence (1.54) applied to the right side of (1.53) yields

(1.55) (y+l)(K(y+l) - K(y)) > y + 1 - R(y+l) > 0

which completes the proof.

From (1.51), one may apply a Tauberian theorem since (1.52)

holds, and conclude that as x -,

(1.56)K(x) /x ~ JA(u)du)x - 1).

Computer quadratures by Solomon (1967) yield

(1.57) 1.80865 < A(u)du <1.80866

He also achieves the result by simulation.

This method (1.33)-(1.57), while somewhat tedious, is a straight-

forward way to obtain asymptotic results which may be used for

general one-dimensional packing equations, and of course, in parti-

cular, to the Renyi model.

An early simulation of the one-dimensional parking problem of

Renyi was due to Solomon (1967). This model produced values that

agreed with the Renyi mean packing constant and obtained

C - .7500 + .02, where .02 is the experimental standard deviation,

using a line of 100 units in length. (See Solomon (1967), Table

VII, p. 130). A similar simulation on the Solomon model in one-

dimension for y - 2, and a line length of 100 yielded a Solomon

14



constant of .8060 + .02702. (See Solomon (1967), Table VI,

p. 130).

Comments on selected papers in random packing are given in

the four review papers Moran (1966), (1969), Little (1974) and

Baddeley (1977).

II. Two Dimensions.

In 1960, shortly after Renyi's one-dimensional solution of

the parking problem was published, I. Palasti (1960), an asso-

ciate of Renyi, considered a two-dimensional analog of Renyi's

model, that is, the sequential random packing of unit squares

uniformly at random on an a x b parking rectangle, with

a > 1, b > 1, where a unit square car which overlaps another

already parked is discarded. The sides of each unit square car

are always parallel to the sides of the a x b parking rectangle.

The process continues until no further unit square cars may be so

parked.

If M(a,b) denotes the mean total number of unit square cars

which may be so parked, then Palasti conjectured that (1960),

(1976)

(2.1) lim M(a,b)/ab = C2 = (.74759)2 .56
a, b-

See also Solomon (1967).

A careful simulation method used by Blaisdell and Solomon

(1970), to assess the Palasti conjecture for the two-dimensional

Renyi model is now described. Analytical attempts at results for

the two-dimensional case have not met with any success.

A simulation to first verify the value of the Renyi constant

in the one-dimensional case is based on a lattice model developed

I by Mackenzie (1962). The paper of Blaisdell and Solomon (1970)

will be quoted in parts. A line with integral length n is

filled sequentially at random with non-overlapping intervals of

length a, their endpoints having integer coordinates. Hence

there is a linear lattice of n points in which a-tuplets of

15



neighboring points are occupied at each trial until the maximum

number of neighboring points left vacant is less than or equal

to a-l. The ratio of the number of points left vacant after the

sequential filling of the lattice to the total number of points

available is labeled 1-f. Mackenzie (1962) demonstrated that,

as n tends to infinity, E(l-f) - 1-p. Thus p is analogous

to the packing density.

A rearrangement of Mackenzie's equation for P yields, as

a tends to infinity, and an-  goes to zero,

(2.2) p = 1 - (l+an -)(l-C - 1(C-e-2Y)a - I + 0(a- 2)
2

where in (2.2), y is Euler's constant, and hence that, from (2.2),
-I

for large a, and an approaching zero, that

(2.3) p = C + (.2162)(a -) - (.2524)(an - I) + (.2162)(n - I)

Enough experiments were done at each pair of values of a

and n so that the estimated standard deviation of the average

I density was close to .0010. Pseudo-random numbers, r, were

generated by a multiplicative congruential method, namely

(2.4) ri+1 - mr (mod(l0)5) .

The simulation was carried out in this way. The index of

a site was i - (n-a+l)r (mod(lO)9 ) for the line or

i + (n-a+l) 2r(d(lO) 9) for the plane, with i - 1,2,...,n-a+l

for the line, and i - 1,2,...,(n-a+l)2 for the plane, respec-

tively. If the site was not occupied, a new random number was
2

generated. If the site was occupiable, a site of a or a

lattice points was covered and the number of sites rendered

unoccupiable, u - 1,2,...,2a-1 for the line, or u - 1,2,...,

(2a-l) 2  for the plane, respectively, was subtracted from the

preceding number of occupiable sites, denoted x. Random numbers

16
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were generated until x was reduced to zero. A stopping rule

used was to end the simulation if 5,000 random numbers in a row

did not lead to the filling of an occupiable site. A small

systematic error was thus made. The times taken to put down

the last few sets of points were so long that a program was

written to keep track of the number, x, of remaining occupi-

able sites, and to compute a random occupiable site index

iX - xr(mod(10)9 ) and to put down the sets of points at i .

A sequence of least-squares line fittings for the one-dimensional

case using successively more non-border simulation points yielded

good agreement with C to four decimal places, using extrapola-
-1

tion a = 0, with an estimated standard deviation smaller than

.001.

Following Blaisdell and Solomon (1970), the square of equation

(2.2) is used to view the Palasti conjecture, ignoring negligible
1 a

terms, as -P- 0, - - 0. This yields
a n

(2.5) p2 = + a + a + la
00 10 a01() a+ 11a(n

where the a.., 0 < i < 1 may be obtained directly from (2.2).

From (2.5a) and the linearity of the data, a least squares fit

(Blaisdell and Solomon (1970), p. 678, eq. 4 and Figure 3, p. 680)

a + b a )

(2.5a) 2 p b + b1 o(1) + b01 () + b (=)

yields observed values slightly greater than the values in (2.5).

Using non-border points, Blaisdell and Solomon (1970), p. 684,

eq. 8, obtain

a 12

(2.6) - C - (l+ )(.0025- .olo9(-) )n a

, with an estimated standard deviation of less than .001.

Thus, (2.6) indicates that the Palasti conjecture is false but

that the difference is small (about .0025) in two dimensions.
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Blaisdell and Solomon (1970) conclude the section on the

Palasti conjecture with Renyi sphere-packing simulations which

suggest that the absolute accuracy of the Palasti conjecture

should decrease with increasing dimension, and indicate the need

for appropriate Renyi cubic packings in higher dimensions, which

Blaisdell and Solomon (1982) later carried out, and is described

below. A condensed s-mary of the work of Blaisdell and Solomon

(1970) is contained in Sharp (1974).

Blaisdell and Solomon (1970) use a result of Dvoretzky and

Robbins (1964) previously alluded to in one-dimension, namely

(2.7) inf M(t)+l < C < s M(t)+l
t+l - - t+l

x<t<x+l x<t<x+l

to obtain C to 15 decimal places. By a similar result 'or

variances given by Dvoretzky and Robbins (1964), namely that

(2.8) lim Var(N(x))/x - D

and

Vat_(Nt)) Var (N(t))
(2.9) inf Var(N(t)) < D < sup t(l

x<t<x+l t+l x-<t<x+l

Blaisdell and Solomon (1970) were able to compute D to seven

decimals, D = .038156. Monte Carlo simulations using results

of Mackenzie by Blaisdell and Solomon (1970) to estimate C give

good agreement with D = .0382 with an estimated standard devia-

tion of .0003. We have already commented that this varies

slightly from Mannion's result (1.31), namely .035672.

Akeda and Hori (1975) published results of computer experi-

ments which supported the two-dimensional Palasti conjecture.

This was based on two-dimensional squares with n/a = 100, where

a is the value of the floating point mantissa. After notifica-

tion of the Blaisdell-Solomon (1970) results which did not support
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the Palasti conjecture, Akeda and Hori carried out further experi-

ments (1976), performed the necessary extrapolation a/n - 0 and

obtained a discrepancy from the Palasti conjecture which was small,

but significant, namely

(2.10) - C - .0027 + .0002

where .0002 is the experimental standard deviation. This essen-

tially reproduces the Blaisdell-Solomon result. Akeda and Hori

(1976) also studied the three-dimensional Renyi model by a differ-

ent and undescribed method. For various integral values of a/n,

and on extrapolation of a/n - 0, for 63 the experimental

packing constant, they obtained

(2.11) (3) 1 2 -C = - .0018 + .0008

where .0008 is the experimental standard deviation. Blaisdell

and Solomon (1982) comment that the discrepancy in three-dimensions

(2.11), is of opposite sign from that in two-dimensions, (2.10),

and that the line through the individual points in the three-

dimensional case crosses the expected extrapolation line, both

results intuitively unappealing.

Finegold and Donnell (1970) published a two-dimensional Renyi

simulation by a fine-mesh method. In this method, the parking lot

is covered by a fine mesh of squares much smaller than the unit

square car. A disc-shiped car is centered on a square, and the car

is then represented by the minimum set of fine squares which will

completely cover the area of the car. The square parking lot was

divided into a mesh of 1024 x 1024 fine squares: the availability

status (i.e. whether or not a fine square was available for a car

center) was stored as a bit in a single megabit array. By an

appropriate counting, the problem of making many trials to avoid

overlaps is eliminated, which is unavoidable in the large-mesh
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method. As the center location for each car is randomly selected

directly from those fine meshes available, then the neighboring

region thereby excluded to another car is also determined and

recorded in the megabit array. To identify thd next vacant

fine squares on which a car center may be randomly parked, two

additional integers for each row of the 1,024 x 1,024 array are

used for bookkeeping purposes. An integer array is used to

record the coordinates of the car centers. The method has the

advantage that the computer time required to find a location

for each car is the same for each car parked, even though the

time to park a car is long, including all bookkeeping. The

authors claim a packing density of .5538 + .0035, with "...

simulations with more realistic periodic boundary conditions

which do not require extrapolation," and an undescribed "course

mesh" method, presumably using a unit square grid which gives

lower and upper bounds for the packing density of .5629 + .0016

and .5649 + .0016, respectively. The authors then claim that
2

as the course and fine mesh results bridge the value C = .5589,

that the Palasti conjecture should not be rejected.

Blaisdell and Solomon comment ((1982), pp. 383-384) that

the assertion quoted above, that extrapolation to a/n - 0 is

unnecessary, is incorrect. It is also to be noted that in an

unextrapolated coarse mesh method with periodic boundaries (as

mentioned in Finegold and Donnell (1979)) cars with centers in

the parking square are counted even though a portion of the car

may overlap the parking square, hence these edge effects in a

finite parking square, prior to extrapolation, can yield too
V .'

high a value for the packing density p2.

Jodrey and Tory (1980) gave results on the Palasti conjecture

Ge for dimensions 1, 2, 3, 4 based on computer experiments with

periodic boundaries and obtained extrapolation values as follows

(C - .74759):
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(2.12) -c - - .0004 + .0005

(P 2 - C - + .0021 + .0002

(p 3 )/ 3 - C - .0029 + .0002

(P )14 _ C - .0003 + .0006
4 °

The values of 02)1/2-C obtained by three of the sets of

authors; Akeda and Hori (1976), Blaisdell and Solomon (1970),

(1982), and Jodrey and Tory (1980) are in good agreement, .0027,

.0025, .0021, respectively, and show a small but significant

departure from the two-dimensional Palasti conjecture in a

~" direction that is intuitively appealing. The values of

S(p3 ) /3-C obtained by Akeda and Hori (1976) and Jodrey and

Tory (1980) are in poor agreement, -. 0018 and +.0029

respectively.

The variance of the limiting packing density has also been

investigated. The results of Blaisdell and Solomon (1982) are

described as follows. Let

2a a *Aa
(2.13) y . s2a1 )(l+n ) I A (a)

as a/n - 0, 1/a - 0, and A2 (a) is an undetermined power series

in 1/a. A least squares treatment of one-dimensional data in

Blaisdell and Solomon (1970) yielded, as noted earlier,

(2.14) Y1 M .0381 + (.0003) + (.0161 + .0065)1/a

+ (-.0422 + .0238)(12

a

where 0.0381 is in good agreement with the result 0.038156

obtained by Blaisdell and Solomon (1970) by using the theore-

tical bounds for the variance developed by Dvoretzky and Robbins

(1964) in (2.9).

A plausible generalization of (2.13) for d dimensions

(i.e. choosing d coordinates for a potential parking site as
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noted earlier, generalizing the development after (2.4) is

(Blaisdell and Solomon (1982))

2a a d

(2.15) d X +a)]

This was found to be in good agreement with the two-dimensional

data (Blaisdell and Solomon (1970), namely,

(2.16) Y2 = .0508 + .0010 + (1.397 + .3905)

+ (-3.6660 + 1.1400)( )
a

Average values for Yd are given for various authors as

follows:
Akeda and Hori (1975) Y2 = .0402+ .0213

Akeda and Hori (1976) Y2 = .0482± .0135, Y3 = .0413+ .0206
Blaisdell and Solomon (1970) .0393+ .0014, Y2  .0526+ .0027

Jodrey and Tory (1980) yl= .0400+ .0058, Y2 = .0468+ .0069,

.0451+ .0101, y4 = .0324+ .0176

Blaisdell and Solomon (1982) Y3 = .0519+ 0062, Y4 = .0518+ .0158.

The experiments in three and four dimensions on the Palasti

conjecture for the Renyi model by Blaisdell and Solomon (1982),

will now be described. Finite lattices with rigid boundaries are

used, (i.e. no overlap of parked cars with boundaries) since this

is easier to program and allows an exact accounting of every

lattice site as occupied or unoccupiable, although as Jodrey and

Tory (1980) have pointed out, this method results in a loss of

accuracy when extrapolating to n - -. Authors using floating

point arithmetic have not agreed with each other nor with the

results of Blaisdell and Solomon (1983) in three-dimensions. One

possible explanation for this is the occurrence of holes which

. present a very tight fit in at least one dimension, and may have

been missed due to round-off error. The likelihood of these tight

22
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fits will increase with increasing dimension and may account for

the fact that the packing densities found by Jodrey and Tory (1980)

are increasingly lower than those of Blaisdell and Solomon (1970),

(1982) in dimensions 2, 3, and 4.

Let, for d - 1,2,3,4,

(2.17) x = (1-6 )I/d )/(l+a) - .2524 + .2162a- I

d d' n

A least squares fit of the data for d - 3,4 Blaisdell and Solomon

(1982) shows that the intercept (a measure of departure from the

Palasti conjecture) increases with dimension. The fitted coeffi-

cient of 1/a2  (a measure of departure from the limiting equation

(2.17)) decreases with dimension. For each dimension 1, 2, 3, 4

respectively, the fit yields almost constant estimates of the

parameters, indicating that the model fit is satisfactory. A

search was made for further terms which might significantly

improve the f it by an all possible subsets regression computer

program. The results are that a significant improvement in the

standard error of estimate is not made upon addition of the extra

terms if n/2 > 5. Further, there is no trend in the residuals,

tending to indicate that the model is satisfactory. The conclu-

sions, as indicated earlier, are that for these computer experi-

ments by Blaisdell and Solomon (1970), (1982) on random sequential

packing of finite lattices with rigid boundaries in dimensions 1,

2, 3, and 4 a discrepancy in the Palasti conjecture in the limit

as 1-I0, - 0 is as followsa n

(2.18) ( 2 )1/ 2 
- C - .0037

S31/3 - C- .0084

64/4 - -* .0127

The following is a table summarizing the experimental results

commented on in Section II, from Blaisdell and Solomon (1982).
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TABLE

Average Normalized Variances for Sequential Random Paking Densities

% References Dimension ~ dNotes
AYd

Akeda and Hori (1975) 2 0.0402 + 0.0213 (a)
Akeda and Hori (1976) 2 0.0482 + 0.0135 (a)
Akeda and Hor (1976) 3 0.0413 + 0.0206
Jodrey and Tory (1980) 1 0.0400 + 0.0058
Jodrey and Tory (1980) 2 0.0468 + 0.0069
Jodrey and Tory (1980) 3 0.0451 + 0.0101
Jodrey and Tory (1980) 4 0.0324 + 0.0176
Blaisdell and Solomon (1970) 1 0.0393 + 0.0014 (b)
Blaisdell and Solomon (1982) 2 0.0526 + 0.0027 (b)
Blaisdell and Solomon (1982) 3 0.0519 + 0.0062

Blaisdell and Solomon (1982) 4 0.0518 00~

Notes. (a) Only the values for squares of edge > 40
have been used.

(b) Only a subset of the values obtained in Solomon
and Blaisdell (1970) have been used, to allow
about the same number of values for each of the

four dimensions.

III. Heuristic Attempts at the Palasti Conjecture.

Palasti (1960) and Weiner (1978) have attempted to prove the

Palasti conjecture in the plane. The unproved assumptions on which

the purported proofs rely will be indicated.

Palasti (1960) based her proof on her

HYPOTHESIS A:

Let M(x,y) be the mean total number of unit squares which are

parked in an xXy parking rectangle in accord with the Renyi

parking model. Then there exists a constant A such that

Pt., (3.1) jM(xl+x 2,y) - M(x,Y) - M(x 2 ,y)I < Ay

IM(xyl+y2) - M(x,yI ) - M(xy 2 )1 < Ax.
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Assuming Hypothesis A, Palasti then attempted to show that

(3.2) lim M(x,y)/xy - a
Sx,y-.

where a is an undetermined constant.

However, Palasti (1976) gives the following quoted interpre-

tation to Hypothesis A, (3.1), "Let us consider the illustrative

meaning of the hypothesis. We can imagine that the (parking)

rectangle has already been filled by unit squares placed randomly

in the above mentioned way. Then the hypothesis means that if

-the (parking) rectangle is divided into two parts by a straight

line (or by a band having unit width parallel to the axis X),

then at most x unit squares would be intersected by this line

(or at most 2x unit squares will be partly covered by the unit

wide band). Naturally the same is true for the straight lines

parallel to the axis, Y, that is at most y unit squares can

be touched by these lines." This justification draws the

following false conclusion, namely that the mean total number of

unit squares which are parked on an xIXy rectangle is the same

as the mean total number of unit squares parked on an xlXy

subset of an (x1+X2)Xy parking rectangle. This latter assumption

has not been proved. That it is most likely false is substantiated

by, e.g., simulations of Blaisdell and Solomon (1970), p. 680,

where the parking density is found to vary with the size of the

parking square. Hence Hypothesis A seems vitiated.

Palasti (1976) considers a different two-dimensional parking

model closer to the one-dimensional Renyi model, and shows that

her conjecture holds for this model, described as follows: A

unit square is dropped uniformly at random on an xXy parking

*rectangle. The edges of the unit square are prolonged until they

intersect the edges of the parking rectangle. The four unit-width

columns so formed are each packed with tight-fitting unit squares

in accord with a one dimensional Renyi model, with each column

treated separately. Each of the four new rectangular regions
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formed are separately considered as new parking rectangles, a

unit square parked on each uniformly at random, and the process

continues as before until no new unit square cars may be parked.

Let R(x,y) denote the mean total number of unit square cars

which may be parked in accord with this Palasti scheme. It is

clear that, conditioning on the location of the first parked

square, and if M(x) denotes the mean total number of unit length

cars parked in accord with a Renyi scheme on a parking segment of

length x, with M(x) 0 0, 0 < x < 1. M(x) - 1, 1 < x < 2, then

(this equation differs from that in Palasti (1976) in notational

use)

(3.3) R(x+l,y+l) = J R(uv)dudv

+ - M(u)du + 2 M(u)du + 1.x 0o Y 0O

By a tedious argument involving partial differential equations,

and invoking unicity of solutions, Palasti is able to show that

(3.4) R(x,y) = M(x) M(y)

is the solution. It is to be noted that (3.3) could have been more

simply obtained by direct substitution of (3.4) into (3.3), using

the previously given equation

r- .oW (l4a) ~ x~l I +2 r x

(1.4a) M(c+l) - 1 + - M(u)du,r'- x fO

M(x) = 0, 0 < x < 1, M(x) = 1, 1 < x < 2

and from (3.3) it is clear that the Palasti conjecture holds, since,

as given earlier,

(1.3) limM C
x
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However, this model was not related to the two-dimensional Renyi

model, hence the result (3.5) cannot be applied to prove the

Palasti conjecture, which had been proposed in connection with

the Renyi model.

Weiner (1978) published a purported proof of the two dimen-

sional Palasti conjecture for both the Renyi and Solomon models.

The two dimensional Solomon model involves shifting a unit square

dropped uniformly at random on the parking rectangle, which over-

laps a prior, parked square either horizontally and or vertically

the shortest distance to an empty parking space (if one exists)

immediately adjacent to the overlapped parked unit square, and

discarding the unit square if no such parking space exists. The

process continues until no further unit square cars may be parked.

Let M(x,y) and K(x,y) denote the mean total numbers of unit

square cars which may be parked on an xXy parking rectangle.

The Palasti conjecture is that

(3.6) lim M(x,y)/xy = C2 f (.74759)2

x, -

and

lim K(x,y)/xy - d2 f (.806)2
x ,y-"

Weiner's argument rested on some unproven, untuitively argued

propositions (Weiner (1978), Lemma 3, p. 806; Lemma 7, p. 809),

namely that for x,y sufficiently large,

(3.7)(a) M(x,y+l) > M(x,y)

M(x+l,y) > M(x,y)

M(x+l,y+l) ! M(x,y)

(3.7)(b) M(x+l,y) <(xY)
(x+l)y - xy
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(3.7)(c) M(x,y) + M(x) > M(x,y+1)

M(x,y) + M(y) > M(x+l,y)

fThe intuitive arguments to support (3.7a-c) are based on the

fact, as may be straightforwardly shown, using (3.5), (3.6), that

for x sufficiently large,

(3.8) M(x+l)/x is monotone increasing.

If the (x+l)X(y+l) parking rectangle is placed on the positive

quadrant with two perpendicular edges along the x and y axes

respectively, then the mean total number of unit square parked cars

which intersect the line segment from (1,0) to (l,y+l) is

clearly M(y+l). Each such parked car was considered to be the

initial car in a series of "staggered rows" which reached across

the parking rectangle along the x direction to the right side

boundary given by the segment (x+l,O) to (x+l,y+l). Consider-

ing the x-component of each staggered row alone, the mean total

number of unit square cars in each staggered row was deemed to be

M(x+l). As pointed out by various critics, however, Hori (1979),

(1980); Tanemura (1979), (1980); Tory and Pickard (1979), (1980);

Weiner (1979), (1980), did not account for all unit square cars,

and there may be non-uniqueness in the definition in certain

configurations.

A later argument published by Weiner (1979) attempted again to

demonstrate (3.7a-c). For example, that M(x+l,y) > M(x,y), a

given configuration of parked cars filling the xXy rectangle, the

resultant parked cars shrunk in a unique way to unit square size,

and the (possibly) resultant opened up parking spaces filled in

accord with the Renyi scheme for an (x+l)Xy rectangle. It was

then claimed that since every filled parking configuration on xXy

can be mapped into (x+l)Xy, with (possibly) some empty parking

spaces, that it therefore followed that M(x+l,y) > M(x,y). However,
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as pointed out, Hor (1980); Tanemura (1980); Tory and Pickard

(1980). such a mapping may not (and probably does not) map the

probability distribution of the final configuration on xXy to

a probability distribution on (x+l)Xy in any tractable manner.

Hence the alternative proof is incomplete. In fact, Weiner

(1978) did acknowledge the heuristic, incomplete nature of the

arguments. Based on the unproved (3.7a-c), Weiner (1978)

attempted to bound M(x,y) above and below by parking models for

which integral inequalities could be written, and which would be

hopefully related to M(x)M(y).

The purported proofs that the presumed tractable means for

these new models, denoted Ml(x,y) and M2(x,y) indeed satisfy

inequalities of the form

(3.9) Ml1(X,y) < M(x,y) < M 2(x,y)

are based on the unproved assumptions (3.7ab,c).

IV. Remarks.

1. As a first step in a new theoretical consideration of the

two dimensional Palasti conjecture for either of the Renyi or

Solomon models, the (k+l)Xx abacus model, with k > 1 an integer,

and x > 1 may be easier to consider mathematically. In this

model, a (k+l)Xx parking rectangle, oriented with the coordinates

of its edges at (0,0), (x,O), (O,k+l), (x,k+l), has k horizontal

lines evenly spaced with respective endpoints at (0,L), (x,t) for

1 < L < k. A line is chosen uniformly at random with probability

1/k each. A unit square car, oriented as usual, is centered on

the chosen line, and dropped horizontally along the line in accord

with a one dimensional Renyi (resp. Solomon) model, and parked on

that line if and only if it is not tangent to a prior parked car

on an adjacent line. The process continues until no further unit

square cars may be parked on the abacus. If M(x,k+l), K(x,k+l)

denote the mean total numbers of unit square cars parked in accord
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with a Renyi or Solomon model, respectively, then it may be

possible to obtain, if existent,

(3.10) lir M(xk)/xk
k ,x--

lim K(x,k)/xk

k,x-

2. For the ordinary two dimensional Renyi or Solomon models,

it is of interest to determine which portions of the inequalities

of (3.7a-c) do exist. Assumption (3.7b), that the parking density

decreases with size of the parking square area for unit-square

-. cars appears vitiated by the negative slopes of the lines in

Figure 3, p. 680, of Blaisdell and Solomon (1970).

* 3. A similarity between random sphere packing density in n

dimensions, I < n < 6, and relative frequency of one-syllable

English words of length n, and in proportion of matriculates with

bachelors, masters, doctoral degrees, is empirically noted by Dolby

and Solomon (1975). A plausibility argument relates these pheno-

mena by closeness to spherical base regions in an appropriate space.

4. A recent book by Ambartzumian (1982), on pp. 188-189

indicates that the sequential random parking of identical two-dimen-

sional objects on a large parking area is one of the most difficult

problems in combinatorial integral geometry.

5. Random packing models for elections in Japan are introduced

in Itoh (1978), (1980); Itoh and Ueda (1978), (1979) to explain

percentage gains among candidates of the Liberal Democratic Party,

using computer-generated experiments. Consider a stick of length

x > 2d. The stick is divided into two sticks with lengths xI

and x2 such that x,> d and x2 > d. Each possible division

is continued until all sticks are shorter than 2d. The sticks

obtained by such a procedure correspond to gaps generated by one-

dimensional random packing. Consider an election in a certain

constituency. The length x corresponds to the total votes obtained
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by candidates of a certain political party. The party nominates

a candidate if he can obtain at least d votes. The length of

each stick, which results from the above procedure, corresponds

to the votes obtained by a candidate nominated by the party.

Evidence for this model is given in Itoh (1978); Itoh and Ueda

(1978), (1979). In Itoh (1980), the asymptotic behavior of the

following quantity is studied.

Let L(x) denote the minimum of lengths of gaps generated by

a one-dimensional Renyi model of parking unit-length cars on a

segment of length x > 1. Then

(3.11) P(L(x+l) = f P(L(y) > h) P(L(x-y)>h)dy

with

0, 0 <x< h

P(L(x) >h) = 1, h < x < 1

O, x l •

It is shown by Laplace transforms methods that for 0 < h < 1,

there exists an a(h) > 0 for which

(3.12) lim -- eL(h)(x~l)P(L(x) >h)dx - 1x..

and an algorithm is given to obtain upper and lower bounds for

a(h).

6. Higher dimensional (n > 4) sequential random packing

schemes have been simulated by Itoh and Solomon (1986) using a

Hamning distance criterion for acceptance or rejection of new

points. This ongoing work suggests that the Palasti conjecture

for this model is also false and that the discrepancy is such that

the n th power of the one dimensional packing density is smaller

than the n-dimensional density.
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7. An application of the work of Itoh and Solomon (1986) is

to be study of the amino acid code, in which 43 = 64 words are

theoretically possible in the triplet coding system by four species

of nucleotides. The actual number of amino acids plus chain
.4'

terminator in the code is only 20. In the Itoh and Solomon scheme,

consider a set of 26 = 64 points in 6-space with coordinates

0 or 1. The distance between the points, called the Hamming

distance, is the square of the Euclidean distance between the

points. One point is chosen uniformly at random and recorded.

Another is chosen uniformly from the remainder and recorded if

its Hamming distance is at least 2, otherwise it is discarded.

The next point is chosen at random from the remainder and recorded

* if and only if its Hamming distance from each of the recorded

points is at least 2, otherwise it is discarded and the process

continued until no further point may be recorded. It was found

by simulation that the expected proportion of recorded points

based on 10,000 simulations of this procedure was 0.3263, close

to 0.328125 B 21/64.

8. An application to the construction of codes seems to be

emerging. Consider binary sequences of length n (i.e. n-vectors
.4

with entries either 0 or 1). Let the distance between two such

n-sequences be the number of locations with different entries.

Define the weight of a sequence to be the number of l's (i.e.

the sum of its entries). An (n,M,d) code is a maximal set of

M binary n-sequences such that the minimum of the distances

between sequences is d. An alternative way of viewing an (n,Md)

code (MacWilliams and Sloane, 1977, p. 41) is to consider each of

the M n-vectors as vertices of an n-cube, so that finding an

(n,M,d) code is equivalent to finding the maximal number of non-

overlapping spheres (denoted M) centered at the vertices of an

n-cube, each with radius Fd/2. A Golay code G is a code of

n 24 dimensional binary sequences, with d - 8, containing one

of weight 0, and such that there are certain linear restrictions
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on the last 12 entries of each 24-sequence. One consequence of

the Golay code construction is that there are 4096 - M code

words with these weights

weight 0 8 12 16 24

number ofnmeof1 759 2576 759 1
24-length words

Itoh and Solomon (1986 - to appear) have found a clever method

of obtaining the Golay code G24 which involves a sequential

random packing simulation as a key component. Starting with the

O-vector (of weight 0), they choose another 24-vector at random

and record it if its Hamming distance is either 8, 12, 16, or 24

from 0, otherwise it is discarded. Continuing until a second

point is recorded, a third point, chosen at random, is recorded

if and only if its distance from the prior two points is either

8, 12, 16, or 24. The process is continued until a total of

12 vectors are obtained in this manner. If the 12 vectors are

linearly independent, then all possible binary sums mod 2 of the

12 vectors are obtained. It was found by simulation that when

this procedure produced 4096 sequences, that their weights were

distributed precisely as in the G2 4  code given in the previous

paragraph. This may suggest a way of producing high order (large

n) codes by a sequential random packing mechanism.

9. Other papers which consider aspects of sequential random

packing schemes but are not cited in the text of this review are

listed under Other References.
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